Search results for "RNA-Directed DNA Methylation"

showing 4 items of 4 documents

RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage

2010

The covalent modification of nucleic acids plays an important role in regulating the functions of DNA and RNA. DNA modifications have been analyzed in considerable detail, and the characterization of (cytosine-5) DNA methylation has been crucial for understanding the molecular basis of epigenetic gene regulation (Klose and Bird 2006). (Cytosine-5) methylation has also been documented in various RNA species, including tRNA, but the function of RNA methylation has not been firmly established yet (Motorin et al. 2010). Dnmt2 proteins were originally assigned to the DNA methyltransferase family, because of their strong sequence conservation of catalytic DNA methyltransferase motifs (Okano et al…

MaleRNA methylationBiologyMethylationDNA methyltransferaseResearch CommunicationMiceRNA TransferStress PhysiologicalGeneticsAnimalsDrosophila ProteinsDNA (Cytosine-5-)-MethyltransferasesRNA-Directed DNA MethylationSequence DeletionTRNA methylationTRNA methyltransferase activityTRNA MethyltransferaseRibonuclease PancreaticMethylationSurvival AnalysisMolecular biologyDrosophila melanogasterDNA methylationRNAFemaleDevelopmental BiologyGenes & Development
researchProduct

Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mec…

2014

Genomic imprinting is a form of epigenetic regulation that results in the expression of either the maternally or paternally inherited allele of a subset of genes (Ramowitz and Bartolomei 2011). This imprinted expression of transcripts is crucial for normal mammalian development. In humans, loss-of-imprinting of specific loci results in a number of diseases exemplified by the reciprocal growth phenotypes of the Beckwith-Wiedemann and Silver-Russell syndromes, and the behavioral disorders Angelman and Prader-Willi syndromes (Kagami et al. 2008; Buiting 2010; Choufani et al. 2010; Eggermann 2010; Kelsey 2010; Mackay and Temple 2010). In addition, aberrant imprinting also contributes to multige…

PlacentaADNGene ExpressionBiologyMethylationGenomic ImprintingPregnancyGerm cellsGeneticsmedicineHumansEpigeneticsRNA-Directed DNA MethylationAllelesEmbryonic Stem CellsGenetics (clinical)GeneticsGenome HumanResearchDNAGenomicsDNA Methylationmedicine.diseaseUniparental disomyCèl·lules germinalsGenòmicaGerm CellsDifferentially methylated regionsDNA methylationIllumina Methylation AssayCpG IslandsFemaleMetilacióGenomic imprintingReprogrammingGenome Research
researchProduct

Viral fitness determines the magnitude of transcriptomic and epigenomic reprograming of defense responses in plants

2020

Although epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses was larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Sev…

0106 biological sciencesPotyvirusAdaptation BiologicalArabidopsisTurnip mosaic virus01 natural sciencesEpigenesis Genetic03 medical and health sciencesEpigenomeBiotic stressGeneticsPlant–virus interactionTurnip mosaic virusEpigeneticsMolecular BiologyGeneRNA-Directed DNA MethylationEcology Evolution Behavior and Systematics030304 developmental biologyEpigenomicsGenetics0303 health sciencesbiologyRNA-directed DNA methylationsystems biologyEpigenomevirus adaptationDNA Methylationbiology.organism_classificationBiological EvolutionRNA silencingExperimental evolutionHost-Pathogen InteractionsDNA methylationMethylomeGenetic FitnessTranscriptome010606 plant biology & botany
researchProduct

Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs

2017

AbstractCytosine-5 RNA methylation plays an important role in several biologically and pathologically relevant processes. However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely unknown. We previously established RNA bisulfite sequencing as a method for the analysis of RNA cytosine-5 methylation patterns at single-base resolution. More recently, next-generation sequencing has provided opportunities to establish transcriptome-wide maps of this modification. Here we present a computational approach that integrates tailored filtering and data-driven statistical modeling to eliminate many of the artifacts that are known to be associate…

0301 basic medicineRNA methylationBisulfite sequencingMethodComputational biologyBiologyTranscriptome03 medical and health sciencesMiceRNA modificationsRNA TransferRNA Ribosomal 28SGeneticsm5CAnimalsHumansRNA MessengerRNA Processing Post-TranscriptionalRNA-Directed DNA MethylationBisulfite sequencingGenetics (clinical)GeneticsHigh-Throughput Nucleotide SequencingRNAMethyltransferasesMethylationRibosomal RNADNA Methylation030104 developmental biologyTransfer RNADNA methylationIllumina Methylation AssayTranscriptome
researchProduct